A Machine Learning Approach for Feature-Sensitive Motion Planning
نویسندگان
چکیده
Although there are many motion planning techniques, there is no single one that performs optimally in every environment for every movable object. Rather, each technique has different strengths and weaknesses which makes it best-suited for particular types of situations. Also, since a given environment can consist of vastly different regions, there may not even be a single planner that is well suited for the problem. Ideally, one would use a suite of planners in concert to solve the problem by applying the best-suited planner in each region. In this paper, we propose an automated framework for feature-sensitive motion planning. We use a machine learning approach to characterize and partition C-space into (possibly overlapping) regions that are well suited to one of the planners in our library of roadmap-based motion planning methods. After the best-suited method is applied in each region, their resulting roadmaps are combined to form a roadmap of the entire planning space. We demonstrate on a range of problems that our proposed feature-sensitive approach achieves results superior to those obtainable by any of the individual planners on their own. “A Machine Learning Approach for ...”, Morales et al. TR04-001, Parasol Lab, Texas A&M, February 2004 1
منابع مشابه
Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004